US009146619B2

a2 United States Patent

Atkin

US 9,146,619 B2
*Sep. 29, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

BI-DIRECTIONAL DISPLAY

Inventor: Steven Edward Atkin, Palm Bay, FL.
(US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1607 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 11/463,131

Filed: Aug. 8, 2006

Prior Publication Data
US 2007/0008331 Al Jan. 11, 2007

Related U.S. Application Data

Continuation of application No. 09/838,377, filed on
Apr. 19, 2001, now Pat. No. 7,120,900.

Int. Cl1.

GO6F 17/00 (2006.01)

GO6F 3/01 (2006.01)

GO6F 1721 (2006.01)

GO6F 3/0489 (2013.01)

GO6F 17/22 (2006.01)

U.S. CL

CPC GO6F 3/018 (2013.01); GOGF 3/0489

(2013.01); GOGF 17/21 (2013.01); GO6F
17/2223 (2013.01)
Field of Classification Search
CPC GOGF 17/21; GOGF 17/2223
USPC 715/255-256; 704/8; 717/117
See application file for complete search history.

Autribute

Unicode

Lookup

Explicit

Weak

Neutral

Implicit

(56) References Cited

U.S. PATENT DOCUMENTS

4,507,734 A 3/1985 Kaldas
5,539,661 A * 7/1996 Nordenstam 379/355.01
5,572,727 A * 11/1996 Larsson et al. ..
5,784,069 A * 7/1998 Danielsetal. 345/467
5,793,381 A 8/1998 Edberg et al.
5,883,986 A 3/1999 Kopec et al.
5,889,481 A 3/1999 Okada
(Continued)
OTHER PUBLICATIONS

Mark Davis, “The Bidirectional Algorithm”, http://www.unicode.
org/reports/tr9/tr9-6. html, published Nov. 11, 1999, pp. 1-21.*

(Continued)

Primary Examiner — Thu Huynh
(74) Attorney, Agent, or Firm — Robert H. Frantz; Parashos
Kalaitzis

(57) ABSTRACT

A bidirectional text display method embodied in a functional
programming language which first assigns bidirectional
attributes to a logical character stream. Next, through explicit
processing, level numbers are assigned, honoring any direc-
tional overrides present in the logical character stream. Sub-
sequent weak and neutral type processing potentially causes
attribute types to change based upon surrounding attribute
types. Then, implicit processing assigns final level numbers
to the stream which control reordering. Finally, reordering
processing produces a sequence of characters in display
order. By separating the facets of layout dealing with reorder-
ing from those that are concerned with rendering, such as line
breaking, glyph selection, and shaping, the Haskell-based
method is more discernible and comprehendable, thereby
allowing it to be more useful as a model upon which others
may base bidirectional implementations.

30 Claims, 3 Drawing Sheets

30

Level

Reorder

US 9,146,619 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

5,929,792 A 7/1999 Herriot
5,946,499 A 8/1999 Saunders
5,946,648 A 8/1999 Halstead et al.
6,055,365 A 4/2000 Tye
6,070,179 A 5/2000 Craft
6,151,624 A 11/2000 Teare et al.
6,204,782 Bl 3/2001 Gonzalez et al.
6,243,701 Bl 6/2001 Shih et al.
6,275,789 Bl 8/2001 Moser et al.
6,324,500 B1 11/2001 Amro et al.
6,397,259 Bl 5/2002 Lincke et al.
6,438,516 Bl 8/2002 Davis

6,493,735 B1* 12/2002 Kumhyrcccceeevinine 715/236

6,611,845 Bl 8/2003 Dockter et al.

6,738,827 Bl 5/2004 Abir et al.

6,937,975 B1* 82005 Elworthyccccovienne. 704/9
6,944,820 B2* 9/2005 Feinbergc.ccccoeevvnencnn 715/256
7,120,900 B2 10/2006 Atkin

7,293,229 B2* 11/2007 Feinbergc.cccceeevvencnn 715/273

4/2008 Chokshi ...
3/2002 Eichel et al. .

... 715/209
... 345/588

7,366,977 B2*
2002/0030689 Al*

2002/0143521 Al* 10/2002 Call 704/1

2002/0156688 Al* 10/2002 Homnetal.ccoo.. 705/26

2003/0115040 Al 6/2003 Xing et al.

2004/0039996 Al 2/2004 Flam

2006/0080641 Al* 4/2006 Tayloretal. 717/126
OTHER PUBLICATIONS

Hutton et al., “comp.lang.functinal Frequently Asked Questions”,
http://www.faqs.org/faqs/func-lang-faq/, published on Aug. 1, 1999,
pp. 1-31.%*

Stansifer et al., “Implementations of Bidirectional Reordering Algo-
rithms” , https://cs.fit.edu/Projects/tech__reports/cs-2000-1.pdf from
web page https:/cs.fit.edu/Projects/tech__reports/tr2000.html, pub-
lished Oct. 4, 2000, pp. 1-14.*

USPTO; Office Actions, Applicant Replies, Information Disclosure
Statements, Non-patent Literature, and BPAI Documents from U.S.
Appl. No. 09/891,341, filed Jun. 24, 2001 by Steven Edward Atkin;
retrieved on Nov. 4, 2009.

USPTO, Office Actions, Applicant replies, and Information Disclo-
sure Statements for U.S. Patent 7,120,900; U.S. Appl. No.
09/838,377, filed Apr. 19, 2001 by Steven Edward Atkin.

USPTO; Office Actions, Applicant Replies, and Information Disclo-
sure Statements from U.S. Appl. No. 09/931,302, now U.S.
6,883,007, filed Aug. 16, 2001 by Steven Edward Atkin; retrieved on
Nov. 4, 2009.

USPTO; Office Actions, Applicant Replies and Information Disclo-
sure Statements from U.S. Appl. No. 09/838,376, now U.S. patent
7,086,004, filed Apr. 19, 2001 by Steven Edward Atkin; retrieved on
Nov. 4, 2009.

Glossary of Unicode Terms, http://www.unicode.org/glossary (last
visited Jan. 28, 2009), pp. 1, 13, and 23 of 41 printout pages.
Wikipedia, http://en.wikipedia.org/wiki/Domain_ name (last visited
Jan. 28, 2009) , “Domain name”.

Wikipedia, http://en.wikipedia.org/wiki/Bi-directional text (last
visited Jan. 28, 2009), “Bi-directional text”.

Atkin, Steven and Stansifer, Ryan, “Implementaions of Bidirectional
Reorder Algorithms,”18th International Unicode Conference, Apr.
2001.

Unicode Consortium, The,“Unicode Standard Annex #15—Unicode
Normalization Forms” published at http://www.unicode.org/
unicode/reports/trl5, retrieved Jun. 15, 2001.

Mockapetris, P., “RFC 1034—Domain Names Concepts and Facili-
ties.” published at http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc 1034.
html, retrieved Jun. 25, 2001.

Unicode Consortium, The, “Unicode Standard Annex #9—The Bidi-
rectional Algorithm.” published at http://www.unicode.org/unicode/
reports/tr9, retrieved Jun. 25, 2001.

USPTO; examination correspondence in related U.S. Appl. No.
09/891,341, filed Jun. 24, 2001 by Steven Edward Atkin, currently
under allowance.

Unicode; “Glossary of Unicode Terms”, published at http://www.
unicode.org/glossary; latest version retrieved Jun. 10, 2010.
Wikipedia; “Domain Name”; retrieved from http://en.wikipedia.org/
wiki/Domain__name retrieved on Jan. 28, 2009.

Wikipedia; “Bidirectional Text”; retrieved from http://en. wikipedia.
org/wiki/Bidirectional _text retrieved on Jan. 28, 2009.

Atkins, Steven, et al.; Implementations of Bidirectional Reordering
Algorithms; 18th International Unicode Conference, Apr. 2001.
Unicode Consortium, The; “Unicode Standard Annex #15—Unicode
Normalization Forms” published at http://www.unicode.org/
unicode/reports/trl 5, Mar. 3, 2001.

Mockapertris, P; “RFC 1034—Domain Names Concepts and Facili-
ties” published at http://www.ics.ohio-state.edw/cqu-bin/rf /r1c1034.
html, Nov. 1987.

Unicode Consortium, The; “Unicode Standard Annex #9—The Bidi-
rectional Algorithm”; published at http://www.unicode.org/unicode/
reports/tr9, Mar. 23, 2001.

Hutton, Graham; “Comp.lang.functional Frequently Asked Ques-
tions”; published at http://www.faqs.org/faqs/func-lang-faq/ on Jul.
30, 1999.

El-Sadany, T.A..et al; “An Arabic Morphological System” published
by IBM Systems Journal; vol. 28, No. 4; pp. 600-612, 1989.
Mudawwar, M.; “Multicode: A Truly Multilingual Approach to Text
Encoding”; published at IEEE, vol. 30, Issue 4, Apr. 1997, pp. 34-43.
Whistler, K., et al; “Language Tagging in Unicode Plain Text”, pub-
lished at ACM, Jan. 1999, pp. 1-14.

Goldsmith, D, et al; “UTF-7: A Mail-Safe Transformation Format of
Unicode”; May 1997, pp. 1-15.

Unicode Consortium; “Plane 14 Characters for Language Tags”;
published online at http://www.unicode.org/reports/tr7, Aug. 31,
2000.

Durst, Martin, et al; “Unicode in XML and Other Markup Lan-
guages”; published online at http://www.unicode.org/unicode/re-
ports/tr20, Dec. 2000.

USPTO; recent examination correspondence in related U.S. Appl.
No. 09/891,341, filed Jun. 26, 2001, by Steven Edward Atkin, cur-
rently in examination.

El-Sadany, T.A., et al. “An Arabic morphological system”, IBM
Systems Journal, vol. 28 No. 4, 1989, pp. 600-612.

Hutton, Graham; “FAQ for comp.lang.functional”, University of
Nottinghan, Jul. 30, 1999, pp. 1-19.

USPTO; examination correspondence in related U.S. Appl. No.
09/838,377, filed Apr. 19, 2001 by Steven Edward Atkin, now US
patent 7,120,900.

USPTO; recent examination correspondence in related U.S. Appl.
No. 09/891,341, filed Jun. 26, 2001, by Steven Edward Atkin.
USPTO,; recent Notice of Allowance (mailed Jul. 5, 2011) in related
U.S. Appl. No. 09/891,341, filed by Steven Edward Atkin on Jun. 26,
2001.

USPTO; recent examination correspondence in related U.S. Appl.
No. 09/891,341, filed Jun. 26, 2001 by Steven Edward Atkin.

* cited by examiner

US 9,146,619 B2

Sheet 1 of 3

Sep. 29, 2015

U.S. Patent

| N34

wesAg seyndwory

JAY AOUA]

£l
UL
30
o PRI}
] . O/ 04 -
RAMPRE] 1 5] 850, N 5 '
~. Ll
SO PHE 230A30] 2%1A30]
81
Jsraadsogy
2 HOERH T
2UTMIOG] SWRIBOL] 6l
yoneonddy
apgquired
~UOR
101
T0l 0

U.S. Patent Sep. 29, 2015 Sheet 2 of 3

o 21
String to Integer .
{Umnticode) List
R
[Logical to Display)j
23
[Integer {o String }J/

Figure 2

US 9,146,619 B2

20
/

U.S. Patent Sep. 29, 2015 Sheet 3 of 3 US 9,146,619 B2

;30
Unicode Attribute Level

' f‘?} 1
Lookup
Explicit Z—\i Ops
Weak ZE :34
Neutral ZE :35
Implicit ZXB?
Reorder 1€ ey

38

Figure 3

US 9,146,619 B2

1
BI-DIRECTIONAL DISPLAY

CROSS-REFERENCE TO RELATED
APPLICATIONS (CLAIMING BENEFIT UNDER
35U.8.C.120)

This patent application is a continuation of U.S. patent
application Ser. No. 09/838,377, filed on Apr. 19, 2001, by
Steven Edward Atkin, now U.S. Pat. No. 7,120,900.

FEDERALLY SPONSORED RESEARCH AND
DEVELOPMENT STATEMENT

This invention was not developed in conjunction with any
Federally sponsored contract.

MICROFICHE APPENDIX

Not applicable.

INCORPORATION BY REFERENCE

Not applicable.
BACKGROUND OF THE INVENTION

1. Field of the Invention

This patent application is a continuation of U.S. patent
application Ser. No. 09/838,377, filed on Apr. 19, 2001, by
Steven Edward Atkin, which is now under allowance. This
invention relates to the technologies of computer displays and
interpretation of file and data for display on a computer. This
invention especially relates to the technologies of bi-direc-
tional display methods for displaying portions of data which
require orientation from left-to-right and from right-to-left to
support various international character sets and languages.

2. Description of the Related Art

Prior to the introduction of rich encoding schemes such as
Unicode and ISO 10646, most text streams consisted of char-
acters originating from a single script. Traditionally an encod-
ing was comprised of one national script plus a subset of the
Latin script (ASCII 7) which fit within the confines of an 8 bit
character type. In such an environment, presentation of text is
a relatively trivial matter.

For the most part, the order in which a program stores its
characters (logical order) is equivalent to the order in which
they are visually presented (display order). Thus, there is a
direct correlation between the logical order and display order.
Exceptions to this rule include scripts which are written from
right to left, such as Arabic, Hebrew, Farsi, Urdu, and Yiddish.

One existing method to solve this problem is to require
computer users, such as computer programmers or web
browser users, to enter characters in display order. This is no
problem for users of left-to-right languages. However, for
users of right-to-left languages, this requires the user to enter
the characters and words in “reverse order”. For example, to
create a text stream containing Arabic characters, the user
must enter them backwards.

This solution is not elegant, and it becomes cumbersome
when right-to-left and left-to-right scripts are intermixed,
creating bi-directional scripts.

Another solution known in the art is to allow users to enter
text in logical order, but to require them to use some explicit
directional formatting codes within the script, for example,
0x202B and 0x202A in Unicode, for segments of text that run
contrary to the base text direction. As this is acceptable in
some instances, it has problems in practice, as well. First, it is

10

15

20

25

30

35

40

45

50

55

60

2

undefined what a computer should do with the explicit control
codes in tasks other than displaying the script. This may cause
problems when these formatting codes are received by
searching algorithms, or when they are interchanged between
systems.

These explicit formatting codes require specific code
points to be set-aside for them, as well. In some encodings,
this may be unacceptable due to the fixed number of code
points available and the number of code points required to
represent the script itself.

Ideally, a system of encoding mixed direction scripts
would maintain the flexibility of entering characters in logical
order while still achieving the correct visual appearance and
display order. Such algorithms do exist, and are called
“implicit layout algorithms”.

Implicit layout algorithms require no explicit directional
codes nor any higher order protocols. These algorithms can
automatically determine the correct visual layout by simply
examining the logical text stream. Yet in certain cases correct
layout of a text stream may still remain ambiguous. Consider
the following example in TABLE 1 in which Arabic letters are
represented by upper case Latin characters.

TABLE 1

Ambiguous layout

fred does not believe TAHT YAS SYAWLA I

In the absence of context, such as a base or paragraph
direction, there are two possible ways to display the sentence.
When displayed from left to right, itappears as “Fred does not
believe I always say that”, and when displayed from right to
left, it appears as “I always say that Fred does not believe”. As
evident from this example, the two interpretations can repre-
sent completely different meanings, and may give no clue
whatsoever that there has been an error in the display of the
script.

The Unicode Bi-directional Algorithm rectifies such prob-
lems by providing a mechanism for unambiguously deter-
mining the visual representation of all raw streams of Uni-
code text. The algorithm is based upon existing implicit
layout algorithms and is supplemented by the addition of
explicit directional control codes.

Generally the Unicode implicit rules are sufficient for the
layout of most text streams. However, there are cases in which
the Unicode algorithm may give inappropriate or inaccurate
display results. For example, a telephone number appearing
in a stream of Arabic letters “MY NUMBER IS (321)713-
0261.” This should not be rendered as a mathematical expres-
sion as show in TABLE 2. As demonstrated, without knowl-
edge of the use of the numbers in this context, the correct
display cannot correctly be determined.

TABLE 2

Rendering numbers

Incorrect display: 0261-713(321) SIREBMUN YM
Correct display: (321)713-0261 SIREBMUNYM

Various implementations of the Unicode Bi-directional
Algorithm have been proposed in technical reports, such as
Unicode Technical Report #9, including “Pretty Good Bidi
Algorithm” (PGBA), “Free Implementation of the Bidi Algo-
rithm” (FriBidi)], “IBM Classes for Unicode” (ICU), Java
1.2, Unicode Java Reference, and Unicode C Reference.

US 9,146,619 B2

3

Currently, there exist two reference implementations of the
Unicode Bidirectional algorithm, one in Java and the other in
C, as well as printed textual descriptions contained in techni-
cal reports such as Unicode Technical Report #9.

Upon our testing of the reference implementations of the
Unicode Bidirectional algorithm on a large number of con-
cise and carefully crafted test cases of basic bidirectional text,
several problems and ambiguous results are found.

To simulate Arabic and Hebrew input/output, a simple set
of rules can be utilized. These rules make use of characters
from the Latin-1 character set. The character mappings allow
Latin-1 text to be used instead of real Unicode characters for
Arabic, Hebrew, and control codes. This is an enormous
convenience in writing, reading, running and printing the test
cases. This form is the same as the one used by the Unicode
Bidirectional Reference Java Implementation, as shown in
TABLE 3.

Unfortunately not all the implementations adhere to these
rules in their test cases. To compensate for this, changes were

made to some of the implementations.
TABLE 3

Bidirectional character mappings
Type Arabic Hebrew Mixed English
L a7z a7z a7z a7z
AL A-Z A-M
R A-Z N-Z
AN 0-9 5-9
EN 0-9 04 0-9
LRE [[[[
LRO { { { {
RLE]]]]
RLO h h h h
PDF
NSM ~ ~ ~ ~

In the Unicode C reference implementation, additional
character mapping tables were added to match those of the
Unicode Java Reference implementation. Also the bidirec-
tional control codes were remapped from the control range
0x00-0x1F to the printable range 0x20-0x7E. This remapping
allowed test results to be compared more easily.

In PGBA and FriBidi, the character attribute tables were
modified to match the character mappings outlined in TABLE
3. However, the strategy we used for evaluation of ICU and
Java was slightly different. In the ICU and Java test cases, the
character types are used rather than a character mapping. So,
in places where our test cases required a specific type, that
type was simply used rather than a character mapping.

The test cases employed are presented in TABLES 4
through 7. The “source” column of each table shows the test
case script input and a test case number, and the “expected”
column sets forth what the correct display order output should
have been.

TABLE 4

Arabic Charmap Tests

Source Expected
1 caris THE CAR in arabic car is RAC EHT in arabic
2 CAR IS the car IN ENGLISH HSILGNE NI the car SIRAC

3 he said “IT IS 123, 456, OK”
4 he said “IT IS (123, 456), OK”
5 he said “IT IS 123,456, OK”
6 he said “IT IS (123,456), OK”
7 HE SAID “it is 123, 456, ok”

he said “KO,456, 123 SI TI”
he said “KO, (456, 123) SI TI”
he said “KO, 123,456 SI TI”
he said “KO, (123,456) SI TI”
“itis 123,456, ok” DIAS EH

10

15

20

25

30

35

40

45

50

55

60

65

4

TABLE 4-continued

Arabic Charmap Tests

Source Expected
8 <H123>shalom</H123> <123H/>shalom<123H>
9 HE SAID “it is a car!” AND NAR DNA “lit is a car” DIAS
RAN EH
10 HE SAID “it is a car!x” AND NAR DNA “it is a car!x” DIAS
RAN EH
11 -2 CELSIUS IS COLD DLOC SI SUISLEC -2
12 SOLVE 1*51-51/5 145 541 5/1 5-1 5*1 EVLOS
13 THE RANGE IS 2.5..5 5..2.5 SIEGNAR EHT
14 10U $10 10$ UOI
15 CHANGE -10% %10- EGNAHC
16 -10% CHANGE EGNAHC %10-
17 he said “IT IS A CAR!” he said “RAC A SI TI!”
18 he said “IT IS A CAR!X” he said “X!RAC A SITI”
19 (TEST) abe abe (TSET)
20 abe (TEST) abe (TSET)
21 #@$ TEST TSET $@#
22 TEST 23 ONCE abc abc ECNO 23 TSET
23 he said “THE VALUES ARE 123, he said “KO, 789, 456, 123
456, 789, OK” ERA SEULAV EHT”.
24 he said “IT IS A bmw 500, OK.” he said “A ST TI bmw KO,
500.”
TABLE 5
Hebrew Charmap Tests
Source Expected
1 HE SAID “it is 123,456, 0k™. “itis 123, 456, ok” DIAS EH
2 <H123>shalom</H123> <123H/>shalom<123H>
3 <h123>SAALAM</h123> <h123>MALAAS</h123>
4 -2 CELSIUS IS COLD DLOC SI SUISLEC -2
5 -10% CHANGE EGNAHC -10%
6 TEST ~~~23%%% ONCE abc abc ECNO 23%%%~~~ TSET
7 TEST abc ~~~23%%% ONCE abc ECNO abc ~~~23%%% TSET
abc
8 TEST abc@23@cde ONCE ECNO abe@23@cde TSET
9 TEST abc 23 cde ONCE ECNO abe 23 cde TSET
10 TEST abe 23 ONCE cde cde ECNO abe 23 TSET
11 Xa22Z Za2X
TABLE 6

Mixed Charmap Tests

Source Expected
1 A~~ ~~A
2 A~a~ a~~A
3 Al 1A

4 Al 1A

5 A~1 1~A
61 1

7 al al

8 N1 IN

9 A~~1 1~~A
10 A~al al~A
11 N1 IN
12 al al

13 A~N1 IN~A
14 NOal alON
15 Y Vs

16 1,2 1,2
17 5,6 5,6
18 Al 2/1A
19 Al 1,5A
20 AlL2 1,2A
21 1,.2 1,2
22 1,A2 2A,1
23 A5.1 5,1A
24 +$1 +$1

US 9,146,619 B2

5
TABLE 6-continued

6
TABLE 8-continued

Mixed Charmap Tests

Source Expected
25 1+$ 1+$
26 5+1 5+1
27 A+$1 1$+A
28 Al+$ $+1A
29 142 142
30 5+ 5+
31 +8 +$
32 N+$1 +$1N
33 +12% +12§
34 @/l a/l
35 1,5 1,5
36 +5 +5

TABLE 7
Explicit Override Tests

Source Expected
1 a}}}def afed
2 a}}}DEF aFED
3 a}}}defDEF aFEDfed
4 a}}}DEFdef afedFED
5 a{{{def adef
6 a{{{DEF aDEF
7 a{{{defDEF adefDEF
8 a{{{DEFdef aDEFdef
9 A}}}def fedA
10 A}}YDEF FEDA
11 A}}}defDEF FEDfedA
12 A}}}DEFdef fedFEDA
13 A{{{def defA
14 A{{{DEF DEFA
15 A{{{defDEF defDEFA
16 A{{{DEFdef DEFdefA
17 Ma_bc abe
18 "labe cba
19 } Q_bc abe
20 }abc abe
21 }A}abc cba
22 }Aiabc abe
23 } }abc cba
24 }}abcDEF FEDcba

All implementations were tested by using the test cases
from TABLES 4 through 6. The implementations that support
the Unicode directional control codes (LRO, LRE, RLO,
RLE, and PDF) were further tested using the test cases from
TABLE 7. At this time, the directional control codes are only
supported by ICU, Java 1.2, Unicode Java reference, and
Unicode C reference.

When the results of the test cases were compared, the
placement of directional control codes and choice of mirrors
was ignored. This is permitted as the final placement of con-
trol codes is arbitrary and mirroring may optionally be
handled by a higher order protocol.

TABLES 8-10 detail the test result differences among the
implementations with respect to the expected results. Only
PGBA, FriBidi and the Unicode C implementations returned
results that were different from the expected results; the Uni-
code Java reference, Java 1.2, and ICU passed all test cases.

TABLE 8

a. Arabic Test Differences for PGBA 2.4

4 he said “KO ,)456 ,123(SI TI”
6 he said “KO ,)123,456(SI TI”

10

15

20

25

30

35

40

45

55

60

65

12 145 1/5 1-5 5*1 EVLOS

14 $10 UOI

15 %-10 EGNAHC

16 EGNAHC %-10

19 abe)TSET(

24 he said “A SI TI bmw 500, KO.”

b. Arabic Test Differences for FriBidi 1.12

2 ST RAC the car NI ENGLISH
7 “ok ,456 ,123 it is” DIAS EH
8 <123H>shalom</123H>
9 DIAS EH “it is a car!” DNA RAN
10 DIAS EH “it is a car!x” DNA RAN
11 -SI SUISLEC 2 COLD
15 10-EGNAHC%
16 -10% CHANGE
19 (TSET) abe
21 #@$ TEST
22 ECNO 23 TSET abe
c¢. Arabic Test Differences for Unicode C Reference

7 “ok ,456 ,123 it is” DIAS EH
11 DLOC SI SUISLEC 2-12

TABLE 9

Hebrew Test Differences

PGBA 24 FriBidi 1.12

5 EGNAHC % - 10
6 abc ECNO %%%23~~~TSET
7 abc ECON %%%23~~~abc TSET
11 Z2aX a2X
TABLE 10
Mixed test differences
PGBA FriBidi 1.12
1 A~
2 ~a~A ~Aa~
10 la~A ~Aal
14 la~A
18 A YA
19 5.1A
21 2,1
23 1,5A
27 +$1A
28 1+3$A
32 15N
35 5,1

Inthe PGBA reference implementation, types AL and R are
treated as being equivalent. This in itself does not present a
problem as long as the data stream is free of ALL and EN
(European number). However, a problem arises when AL is
followed by a EN. For example, test case 18 from TABLE 6.
In this situation, the ENs should be treated as AN’s (Arabic
number) and not left as EN’s.

The handling of NSM is also different in PGBA. PGBA
treats NSM as being equal to ON (other neutral). This delays
the handling of NSM until the neutral type resolution phase
rather than in the weak type resolution phase. By delaying
their handling, the wrong set of rules are used to resolve the
NSM type. For example, in test case 2 from TABLE 6 the last
NSM should be treated as type L instead of type R.

There are a few problems with the FriBidi implementation,
as well. Specifically, when an AL is followed by a EN the EN
is not being changed to type AN. See test case 18 in TABLE

US 9,146,619 B2

7

6. This is the same symptom as was found in PGBA, but the
root cause is different. In FriBidi, step W2 (weak processing
phase rule two) the wrong type is being examined it should be
type EN instead of type N. Additionally, there is a problem in
determining the first strong directional character. The only
types that are recognized as having a strong direction are
types R and L. Type AL should also be recognized as a strong
directional character. For example, when test case 1 from
TABLE 6 is examined FriBidi incorrectly determines that
there are no strong directional characters present. It then
proceeds to default the base direction to type L when it should
actually be of type R. This problem also causes test cases 2, 9,
and 11 from TABLE 4 to fail.

The greatest hindrance to the creation of a method for
converting logical data streams to display streams lies in the
problem description. The problem of bidirectional layout is ill
defined with respect to the input(s) and output(s).

Certainly the most obvious input is the data stream itself.
Several situations require additional input in order to cor-
rectly determine the output stream. For example, in Farsi
mathematical expressions are written left to right while in
Arabic they are written right to left. This may require a special
sub input (directional control code) to appear within stream
for proper handling to occur. If it becomes necessary to use
control codes for obtaining the desired results the purpose of
an algorithm becomes unclear.

The situation becomes even more cloudy when one con-
siders other possible inputs (paragraph levels, line breaks,
shaping, directional overrides, numeric overrides, etc.) Are to
be treated as separate inputs? If they are treated as being
distinct, when, where and how should they be used? Deter-
mining the output(s) is not simple either. The correct output
(s) is largely based on the context in which an algorithm be
used. If an algorithm is used to render text, then appropriate
outputs might be a glyph vector and a set of screen positions.
On the other hand, if an algorithm is simply being used
determine character reordering, then an acceptable output
might just be a reordered character stream.

The Unicode Bidirectional algorithm has gone through
several iterations over the years. The current textual reference
been greatly refined. Nevertheless, we believe that there is
room for improvement. Implementing a bidirectional layout
algorithm is not a trivial matter even when one restricts an
implementation to just reordering. Part of the difficulty can be
attributed to the textual description of the algorithm. Addi-
tionally there are areas that require further clarification.

As an example consider step L2 of the Unicode Bidirec-
tional Reference Algorithm. It states the following, “From the
highest level found in the text to the lowest odd level on each
reverse any contiguous sequence of characters that are atlevel
or higher.” This has more than one possible interpretation. It
could mean that once the highest level has been found and
processed the next level for processing should one less than
the current level. It could also be interpreted meaning that the
next level to be processed is the next lowest level actually
present in the text, which may be greater one less than the
current level. It was only through an examination of Uni-
code’s Java implementation that we were to determine the
answer.

There are also problems concerning the bounds of the
Uni-code Bidirectional Algorithm. In the absence of higher
order protocols it is not always possible to perform all the
steps of Unicode Bidirectional Algorithm. In particular, step
L4 requires mirrored characters to be depicted by mirrored
glyphs their resolved directionality is R. However, glyph
selection requires knowledge of fonts and glyph substitution
tables. One possible mechanism for avoiding glyph substitu-

40

45

8

tions is to perform mirroring via character substitutions. In
this approach mirrored characters are replaced by their cor-
responding character mirrors. In most situations this
approach yields the same results. The only drawback occurs
when a mirrored character does not have its corresponding
mirror encoded in Unicode. For example, the square root
character (U221A) does not have its corresponding mirror
encoded.

Such situations have placed developers in a quandary. One
solution is to use the implementations (Java and C) as a
reference. But these implementations don’t agree in every
case. Furthermore the implementations have different goals.
The Java implementation follows the textual reference
closely while the C implementation offers performance
improvements.

However, if computer source code is to be used as a refer-
ence design, then source code that is more attuned to describ-
ing these types of methods and algorithms is required. The
flexibility, extensibility, and understandability of the impera-
tive language references causes these references to be inad-
equate.

For example, using the imperative language reference, it
matters what character encoding one uses (UCS4, UCS2, or
UTEF8). In “C”, the size of types are not guaranteed to be
portable, making C unsuitable as a reference. In the Java,
reference implementation the ramifications of moving to
UCS4 are unclear.

Therefore, there is a need in the art for a new reference
method for bidirectional text script interpretation for display,
which avoids the errors in interpretation of the existing ref-
erences, as well as provides a framework upon which future,
improved models may be realized. Preferably, the new
method should separate details that are not directly related to
the method such that text and character reordering is com-
pletely independent from character encoding.

BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description when taken in conjunc-
tion with the figures presented herein provide a complete
disclosure of the invention.

FIG. 1 shows the arrangement of components of a com-
puter system which is capable of executing Haskell programs.

FIG. 2 illustrates the internal manipulation of Unicode as
sequences of 32-bit integers.

FIG. 3 shows the five phases of the method in the form of
a data flow diagram.

SUMMARY OF THE INVENTION

In a first aspect of the present invention, a bidirectional text
display method embodied in a functional programming lan-
guage, rather than an imperative programming language, is
provided to solve the problems of the currently available
bidirectional display methods. According to the preferred
embodiment, the functional language Haskell is used to pro-
vide the encoding of the process of the invention. However, it
will be recognized by those skilled in the art that alternate
functional languages, such as Standard ML (SML), Miranda,
Lisp, Scheme, or Erlang, may also be employed to encode the
process of the invention.

In the first step of the method, bidirectional attributes are
looked up and assigned to a logical character stream. The
attributes are preferably obtained from an online character
database.

Next, through explicit processing, level numbers are
assigned, honoring any directional overrides present in the

US 9,146,619 B2

9

logical character stream. Subsequent weak and neutral type
processing potentially causes attribute types to change based
upon surrounding attribute types. Then, implicit processing
assigns final level numbers to the stream which control reor-
dering. Finally, reordering processing produces a sequence of
characters in display order.

By separating the facets of layout dealing with reordering
from those that are concerned with rendering, such as line
breaking, glyph selection, and shaping, the Haskell-based
method is more discernible and comprehendable, thereby
allowing it to be more useful as a model upon which others
may base bidirectional implementations.

DETAILED DESCRIPTION OF THE INVENTION

The invention is realized in part by a computing platform,
such as an IBM-compatible personal computer, Apple
MaclIntosh™, or other computer hardware platform, running
a common operating system such as Linux, UNIX,
Microsoft’s Windows™, IBM’s AIX™ or OS/2™, Accord-
ing to the preferred embodiment, the method is encoded in the
functional programming language Haskell, which can be
executed by many computing platforms suitably equipped
with one of several widely-available Haskell interpreters, or
compiled from Haskell to machine-specific executable code.

Turning to FIG. 1, a generalized organization of such a
computer platform (10) is shown. The computer platform
(10) has a central processing unit (CPU) (14), computer read-
able memory devices, a set of device drivers and a basic
input/output system (BIOS) (1a), and typically an operating
system (103), such as those mentioned previously. Most com-
puter platforms, such as a personal computer, are also
equipped with disk interfaces (15) and disks; user device [/O
(16) to interface to keyboards, pointing devices, and a dis-
play; and a network interface card or device (17) allowing
communications to a computer network, wireless network, or
the Internet. Some computer platforms, such as personal digi-
tal assistants, web-enabled telephones, and Internet appli-
ances may not be provided with all of these components, but
in general, the functionality of these components is present in
some form.

The computer platform (10) is also typically provided with
one or more non-portable, machine-specific application pro-
grams (102).

According to the preferred embodiment, the computer
platform is provided with a Haskell interpreter (101), prefer-
ably the Hugs 98 interpreter which is freely available from the
“HugsOnline” web site for a variety of operating systems and
computer platform.

The remaining disclosure of the invention is presented
relative to the computer program implementation of the
method for displaying bidirectional text scripts, referred to as
Haskell Bidi (HaBi).

One might ask why implement the Unicode Bidirectional
algorithm in a purely functional language, such as Haskell,
when so many other implementations already exist? It is the
authors contention that a greater understanding of the algo-
rithm is best obtained by a clear functional description of its
operations. Without a clear description, implementers may
encounter ambiguities that ultimately lead to divergent imple-
mentations, contrary the primary goal of the Unicode Bidi-
rectional Algorithm.

Currently available bidirectional text script display meth-
ods (BiDi) are implemented in imperative languages, such as
C and Java, instead of a functional language, such as Haskell.
The imperative nature of these languages leaves the possibil-
ity of special cases and circumstances not being properly

15

20

40

45

10
handled by the final code, as demonstrated by the testing
described in the BACKGROUND OF THE INVENTION.

Thus, in a first aspect of the present invention, a method of
script-to-display interpretation for bidirectional text scripts is
implemented in a functional language, preferably Haskell.
More specifically, the preferred embodiment uses the Hugs
98 version of Haskell 98 as it is widely available (Linux,
Windows, and Macintosh) and easily configurable.

Since the dominant concern in HaBi is comprehension and
readability, the implementation closely follows the textual
description as published in the Unicode Technical Report #9,
as shown in the data flow diagram of FIG. 3. HaBi is com-
prised of five phases:

(a) resolution of explicit directional controls (32 and 33);

(b) resolution of weak types (34);

(c) resolution of neutral types (35);

(d) resolution of implicit levels (36 and 37); and

(e) reordering of levels (38).

Currently, there is no direct support for Unicode in the 98
implementation of Haskell 98. As such, the method treats
Unicode lists of 16- or 32-bit integers. The method is divided
into two Haskell 98 modules for Unicode manipulation.

The first module is used to create Unicode (UCS4, UCS2,
and UTF-8) strings. The second module determines character
types. Additional utility functions convert Haskell strings
with optional Unicode character escapes to 16- or 32-bit
integer lists.

A Unicode escape takes the form \uhhhh, analogous to the
Java reference implementation. This escape sequence is used
for representing code points outside the range 0-00-0x7f. This
format was chosen so as to permit easy comparison of results
to other implementations.

Internally, HaBi manipulates Unicode as sequences of
32-bitintegers, as shownin F1G. 2. HaBi is prepared to handle
surrogates as soon as Unicode assigns them in the future; the
only change HaBi would require is an updated character
attribute table. It would be more elegant to use the polymor-
phism of Haskell since the algorithm does not really care
about the type of a character only its attribute.

Each Unicode character has an associated Bidirectional
attribute and level number. Again, FIG. 3 shows the general
relationship of this information throughout the steps of the
method.

The first step in our implementation is to lookup and assign
bidirectional attributes to the logical character stream. The
attributes are preferably obtained from the online character
database as published in Unicode 3.0.

At this point, explicit processing assigns level numbers as
well as honoring any directional overrides. Weak and neutral
processing potentially causes attribute types to change based
upon surrounding attribute types. Implicit processing assigns
final level numbers to the stream which control reordering.
Reordering then produces a sequence of Unicode characters
in display order.

HaBi uses the following three internal types:

(a) type Attributed=(Ucs4, Bidi);

(b) type Level=(Int, Ucs4, Bidi); and

(c) data Run=LL[Level]ILR[Level]IRR[Level]IRL[Level]

Wherever possible, HaBi treats characters collectively as
sequential runs rather than as individual characters. By using
one of data type Run’s four possible type constructors, char-
acters can then be grouped by level. These four constructors
signify the possible combinations of starting and ending run
directions. For example, the LL constructor signifies that the
start of a run and the end of a run are both left to right.
Therefore, runs of LL followed by RL are not created.

US 9,146,619 B2

11

Before the details of the disclosed source code are dis-
cussed, it is important to make note of the following concern-
ing HaBi:

(a) the logical text stream is assumed to have already been

separated into paragraphs and lines;

(b) directional control codes are removed once processed;

(c) no limit is imposed on the number of allowable embed-

dings; and

(d) mirroring is accomplished by performing character

replacement.

By separating those facets of layout dealing with reorder-
ing from those that are concerned with rendering (line break-
ing, glyph selection, and shaping), comprehension of the
Haskell implementation is more discernible.

In the Haskell source code provided in TABLE 11, func-
tions are named in such a way so as to correspond to the
appropriate section in the Unicode Bidirectional textual ref-
erence. For example, the function named “weak” refers to
overall weak type resolution. While the function named
“wl_7”, lines 45-71 of TABLE 11, specifically refers to
Unicode steps 1 through 7 in weak resolution.

The function “logicalToDisplay”, lines 150-158 in TABLE
11, is used to convert a stream in logical order to one in
display order. First, calls to the functions “explicit” (TABLE
11 lines 37-41), “weak” (lines 73-78), “neutral” (lines 94-99)
and “implicit” (lines 114-119) form runs of fully resolved
characters.

Calls to “reorder” (lines 134-140) and “mirror” (lines 142-
148) are then applied to the fully resolved runs, which in turn
yield a stream in display order. This is discussed in greater
detail in the next few paragraphs.

The function “explicit” breaks the logical text stream into
logical runs via calls to “p2_ 3" (lines 1-8), “x2_9” (lines
10-27), and “x10” (lines 29-35). The reference description
suggests the use of stacks for keeping track of levels, over-
rides, and embeddings. In our implementation, stacks are
used as well, but they are implicit rather than explicit (func-
tion “x2_ 9” arguments two, three, and four). The functions
“weak”, “neutral”, and “implicit” are then mapped onto each
individual run.

In “weak” steps 1 though 7 (lines 45-71), two pieces of
information are carried forward (the second and third argu-
ments of function “w1__7”) the current directional state and
the last character’s type. There are cases in the method where
acharacter’s direction gets changed but the character’s intrin-
sic type remains unchanged. For example, if a stream con-
tained an AL followed by a EN, the AL would change to type
R (step three in weak types resolution). However the last
character would need to remain AL so as to cause the EN to
change to AN (step two in resolution of weak types). The
functions “nl_ 2" (lines 80-92) and “i1_2” (lines 102-112)
resolve the neutral and implicit character types respectively.

Further details of these functions are fairly straight for-
ward. At this point, runs are fully resolved and ready for
reordering (function reorder). Reordering occurs in two
stages. In the first stage, shown as function “reverse Run”
(lines 121-126), a run is either completely reversed or left as
is. This decision is based upon whether a run’s level is even or
odd. Ifitis odd (right to left), then it is reversed. In the second
stage, shown as function “reverse Levels” (lines 128-132), the
list of runs are reordered. At first it may not be obvious that the
list being folded is not the list of runs, but is the list of levels,
highest level to the lowest odd level in the stream. Once
reordering is finished, the list of runs are collapsed into a
single list of characters in display order.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

All ofthetest cases discussed previously yield the expected
results for the implementation given in TABLE 11, thereby
avoiding the problems and inaccuracies of the other tested
reference designs.

In summary, by using a functional language as the basis
upon which we provide our bidirectional text display method,
we are able to separate details that are not directly related to
the algorithm. As such, reordering is completely independent
from character encoding.

It does not matter what character encoding one uses
(UCS4, UCS2, or UTF8). The Haskell type system and HaBi
character attribute function allows the character encoding to
change while not impacting the reordering algorithm, as
opposed to other implementations which may find this level
of separation difficult to achieve. HaBi presents the steps as
simple, easy to understand, functions without side effects.
This allows implementers to comprehend the true meaning of
each step in the algorithm independently of the others while
yet remaining free from language implementation details.
Additionally, the creation of test cases is thus more system-
atic.

It will be recognized by those skilled in the art that many
variations and substitutions may be made to the embodiment
described herein without departing from the spirit and scope
of'the invention. For example, other functional programming
methodologies may be adopted, such as use of a specific
macro language, or use of alternate suitable operating sys-
tems and computer platforms. As such, the scope of this
invention should be limited only by the language of the fol-
lowing claims.

TABLE 11

Haskell Source Code for HaBi

1 -- Rule P2, P3 determine base level of text from the first strong
2 -- directional character

3 p2_3 :: [Attributed] -> Int

4p2_3[]=0

5p2_3((_L)xs)=0

6p2_3 ((_,AL)xs)=1

Tp2_3((_R)yxs)=1

8 p2_ 3 (_:xs) =p2_3(xs)

9

10 -- Rules X2 — X9

11 x2_9 :: [Int] -> [Bidi] -> [Bidi] -> [Attributed] -> [Level]
12x2_9 _[1=[]

13 x2_9 (l:ls) os es ((x,RLE):xs)

14 =x2_9 ((add | R):1:ls) (N:0s) (RLE:es) xs

15 x2_9 (L:ls) os es ((x,LRE):xs)

16 =x2_9 ((add | L):l:Is) (N:0s) (LRE:es) xs

17 x2_9 (l:ls) os es ((x,RLO):xs)

18 =x2_ 9 ((add | R):l:ls) (R:os) (RLO:es) xs

19 x2_9 (l:ls) os es ((x,LRO):xs)

20 =%x2_9 ((add | L):l:ls) (L:os) (LRO:es) xs

21 x2_9 Is os (e:es) ((x,PDF):xs)

22 | elem e [RLE,LRE,RLO,LRO] = x2__9 (tail Is) (tail os) es xs
23 x2_9 Is os es ((x,PDF):xs)

24=%x2_09lsosesxs

25%x2_9 s oses ((x,y):xs)

26 | (head os) == N = ((head Is),x,y) : x2_9 Is os es xs
27 | otherwise = ((head ls),x,(head os)) : x2__9 Is os es xs
28

29 -- Rule X10 group characters by level

30 %10 :: (Int, Int) -> [Level] -> Run

31 x10 (sor,eor) xs

32 | even sor && even eor = LL xs

33 | even sor && odd eor = LR xs

34 | odd sor && even eor = RL xs

35 | otherwise = RR xs

36

37 -- Process explicit characters X1 —X10

38 explicit :: Int -> [Attributed] -> [Run]

39 explicit | xs = zipWith x10 (runList levels | 1) groups

US 9,146,619 B2

13
TABLE 11-continued

14
TABLE 11-continued

Haskell Source Code for HaBi

Haskell Source Code for HaBi

40 where levels = (map (\x -> level (head x)) groups)
41 groups = groupBy levelEql (x2_9 [I][N][] xs)
42

43

44

45 -- Rules W1 - W7

46 wl_7 :: [Level]->Bidi ->Bidi ->[Level]

4Twl_T7[]1__=[]

48 wl_7 ((x,y,L)xs) _ = (x,y,L):(wl_7xsLL)

49 wl_7((xy,R):xs) _ _ =(xy,R):(wl_7xsRR)
50wl_7(xy,AL)xs) _ _ = (xy,R):(wl_7xsALR)

51wl _7 ((x,y,AN):xs) dir __ = (%,y,AN):(wl__7 xs dir AN)
52wl _7 (x,y,EN)xs) AL _ = (x,5,AN):(wl_7 xs AL AN)
53wl _7(xyEN)xs) L _ =(xy,L):(wl_7xs L EN)
54wl _7 (x,y,EN):xs) dir __ = (x,y,EN):(wl_7 xs dir EN)
55 wl_7 ((x,y,NSM):xs) L N = (x,y,L):(wl_7xs L L)

56 wl_7 ((x,y,NSM):xs) RN = (x,y,R):(wl_7 xs RR)

57 wl_7 ((x,y,NSM):xs) dir last = (x,y,last):(wl_7 xs dir last)
58 wl_7 ((a,b,ES):(x,y,EN):xs) dir EN =

59 (a,b,EN):(x,y,EN):(wl_7 xs dir EN)

60 wl_7 ((a,b,CS):(x,y,EN):xs) dir EN =

61 (a,b,EN):(x,y,EN):(wl_7 xs dir EN)

62 wl_7 ((a,b,CS):(x,y,EN):xs) AL AN =

63 (a,b,AN):(x,y,AN):(wl__7 xs AL AN)

64 wl_7 ((a,b,CS):(x,y,AN):xs) dir AN =

65 (a,b,AN):(x,y,AN):(wl__7 xs dir AN)

66 wl_7 ((%,y,ET):xs) dir EN = (x,y,EN):(w1_7 xs dir EN)
67 wl_7 ((%,y,z):xs) dir last

68 | z==ET && findEnd xs ET == EN && dir /= AL

69 = (x,y,EN):(wl_7 xs dir EN)

70 | elem z [CS,ES,ET] = (x,y,ON):(wl__7 xs dir ON)

71 | otherwise = (x,y,z):(wl__7 xs dir z)

72

73 -- Process a run of weak characters W1 — W7

74 weak :: Run -> Run

75 weak (LL xs) =LL (wl_7xs L N)

76 weak (LR xs) = LR (wl_7xs L N)

77 weak (RL xs) = RL (wl_7 xs R N)

78 weak (RR xs) =RR (wl_7xs R N)

79

80 -- Rules N1 — N2

81 nl_ 2 :: [[Level]] -> Bidi -> Bidi -> Bidi -> [Level]
82nl_2[]_ __base=[]

83 nl_ 2 (x:xs) sor eor base

84 | isLeft x =x ++ (nl1_2 xs L eor base)

85 | isRight x = x ++ (n1__2 xs R eor base)

86 | isNeutral x && sor == R && (dir xs eor) ==

87 = (map (newBidi R) x) ++ (n1__2 xs R eor base)

88 | isNeutral x && sor == L && (dir xs eor) ==

89 = (map (newBidi L) x) ++ (n1__2 xs L eor base)

90 | isNeutral x =

91 (map (newBidi base) x) ++ (nl__2 xs sor eor base)

92 | otherwise = x ++ (nl1__2 xs sor eor base)

93

94 -- Process a run of neutral characters N1 — N2

95 neutral :: Run -> Run

96 neutral (LL xs) = LL (nl__2 (groupBy neutralEql xs) L L L)
97 neutral (LR xs) = LR (nl__2 (groupBy neutralEql xs) L R L)
98 neutral (RL xs) = RL (nl_2 (groupBy neutralEql xs) R L R)
99 neutral (RR xs) = RR (nl_ 2 (groupBy neutralEql xs) R R R)
100

101

102 -- Rule I1, 12

103 i1_ 2 :: [[Level]] -> Bidi -> [Level]

104i1_2[1_=1]

105 112 ((x:xs):ys) dir

106 lattrib x ==R && dir ==L

107 = (map (newLevel 1) (x:xs)) ++ (i1_2ysL)

108 | elem (attrib x) [AN,EN] && dir ==

109 = (map (newLevel 2) (x:xs)) ++ (i1_2ys L)

110 | elem (attrib x) [L,AN,EN] && dir ==

111 = (map (newLevel 1) (x:xs)) ++ (i1_2 ys R)

112112 (x:xs) dir = x ++ (i1__2 xs dir)

113

114 -- Process a run of implicit characters 11 — 12

115 implicit :: Run -> Run

116 implicit (LL xs) = LL (i1__2 (groupBy bidiEql xs) L)
117 implicit (LR xs) = LR (i1__2 (groupBy bidiEql xs) L)

10

15

20

25

30

35

40

45

50

55

60

65

118 implicit (RL xs) = RL (i1__2 (groupBy bidiEql xs) R)
119 implicit (RR xs) = RR (il__2 (groupBy bidiEql xs) R)
120

121 -- If a run is odd (L) then reverse the characters

122 reverseRun :: [Level] -> [Level]

123 reverseRun [] =[]

124 reverseRun (x:xs)

125 | even (level x) = x:xs

126 | otherwise = reverse (X:xs)

127
128 reverseLevels :: [[Level]] -> [[Level]] -> Int -> [[Level]]
129 reverseLevelsw [] _=w

130 reverseLevels w (x:xs) a = if (level (head X)) >=a
131 then reverseLevels (x:w) xs a

132 else w ++ [x] ++ (reverseLevels [] xs a)

133

134 -- Rule L2 Reorder

135 reorder:: [Run] -> Bidi -> [[Level]]

136 reorder xs base = fold1 (reverseLevels []) runs levels
137 where

138 flat = concat (map toLevel xs)

139 runs = map reverseRun (groupBy levelEq] flat)
140 levels = getLevels runs

141

142 -- Rule L4 Mirrors

143 mirror:: [Level] -> [Level]

144 mirror [1 =[]

145 mirror ((x,y,R):xs) = case getMirror y of

146 Nothing -> (x,y,R):(mirror xs)

147 Just a -> (x,a,R):(mirror xs)

148 mirror (x:xs) = x:(mirror xs)

149

150 logicalToDisplay :: [Attributed] -> [Ucs4]

151 logicalToDisplay attribs

152 =let baseLevel = p2__3 attribs in

153 let baseDir = (if odd baseLevel then R else L) in
154 let x = explicit baseLevel attribs in

155 let w = map weak X in

156 let n = map neutral w in

157 let i = map implicit n in

158 map character (mirror (concat (reorder i baseDir)))

What is claimed is:

1. A computer-implemented method for displaying bi-di-

rectional text on a computer display comprising:

detecting by a computer that a string of characters for
display to ahuman interface device contains one or more
Arabic Letters followed by one or more European Num-

bers;

responsive to the detecting, treating by the computer the
one or more European Numbers as one or more Arabic

Numbers by:

assigning bidirectional attributes to a logical character

stream;

assigning initial level numbers while honoring any
directional overrides by explicit processing, wherein
the directional overrides include Left-to-right display

order and Right-to-left display order;

changing attribute types based upon surrounding
attribute types through weak processing and neutral
processing, wherein, during the weak processing, a
directional override is changed to Right-to-left dis-
play order for a last Arabic Letter of the one or more
Arabic Letters which immediate precedes a first char-
acter of the one or more European Numbers while
retaining an attribute type of Arabic Letter for the last
Arabic Letter, thereby causing the first European
Number to change to an attribute type of Arabic Num-

ber;

associating final level numbers to the logical character

stream through implicit processing; and

US 9,146,619 B2

15

reordering the string of characters within the logical
character stream into display order according to the
final level numbers by separately handling facets of
layout relating to character reordering and facets
related to character stream rendering; and

displaying by a computer the reordered string of characters

to a human interface device.

2. The computer-implemented method as set forth in claim
1 wherein the reordering is performed in at least in part in a
functional programming language.

3. The computer-implemented method as set forth in claim
1 further comprising handling the character stream as sequen-
tial runs of integers during the steps of assigning attributes,
level numbers, changing attribute types, associating final
level numbers, and reordering characters.

4. The computer-implemented method as set forth in claim
1 wherein the step of changing attribute types based upon
surrounding attribute types through weak and neutral pro-
cessing in a functional programming language comprises
providing blocks of functional programming language
indexed by name weak type processing, neutral type process-
ing, and implicit level processing such that the method may be
readily used as a reference.

5. The computer-implemented method as set forth in claim
1 wherein one or more steps are provided at least in part in
Haskell functional language.

6. The computer-implemented as set forth in claim 1
wherein one or more steps are provided at least in part in
Erlang functional language.

7. The computer-implemented method as set forth in claim
1 wherein one or more steps are provided at least in part in
Standard Machine Language (“SML”) functional language.

8. The computer-implemented method as set forth in claim
1 wherein one or more steps are provided in Miranda func-
tional language.

9. The computer-implemented method as set forth in claim
1 wherein one or more steps are provided at least in part in
Lisp functional language.

10. The computer-implemented method as set forth in
claim 1 wherein one or more steps are provided at least in part
in Scheme functional language.

11. A computer program product for displaying bi-direc-
tional text on a computer display comprising:

a computer-readable storage memory device suitable for

storage of program instructions;

program instruction embodied by the computer-readable

storage memory device which cause a computer proces-

sor, when executed, to:

detect a string of characters for display to a human
interface device contains one or more Arabic Letters
followed by one or more European Numbers;

assign bidirectional attributes to a logical character
stream;

assign initial level numbers while honoring any direc-
tional overrides by explicit processing, wherein the
directional overrides include Lefi-to-right display
order and Right-to-left display order;

change attribute types based upon surrounding attribute
types through weak processing and neutral process-
ing, wherein, during the weak processing, a direc-
tional override is changed to Right-to-left display
order for a last Arabic Letter of the one or more Arabic
Letters which immediate precedes a first character of
the one or more European Numbers while retaining an
attribute type of Arabic Letter for the last Arabic Let-
ter, thereby causing the first European Number to
change to an attribute type of Arabic Number;

10

15

20

25

30

35

40

45

50

55

60

65

16

associate final level numbers to the logical character
stream through implicit processing; and

reorder the string of characters within the logical char-
acter stream into display order according to the final
level numbers by separately handling facets of layout
relating to character reordering and facets related to
character stream rendering; and

display the reordered string of characters to a human
interface device.

12. The computer program product as set forth in claim 11
wherein the program instruction for reordering comprises
functional programming language.

13. The computer program product as set forth in claim 11
further comprising program instruction to handle the charac-
ter stream as sequential runs of integers during the steps of
assigning attributes, level numbers, changing attribute types,
associating final level numbers, and reordering characters.

14. The computer program product as set forth in claim 11
wherein the program instruction for changing attribute types
based upon surrounding attribute types through weak and
neutral processing comprises blocks of functional program-
ming language indexed by name weak type processing, neu-
tral type processing, and implicit level processing such that
the method may be readily used as a reference.

15. The computer program product as set forth in claim 11
wherein the program instruction comprises Haskell func-
tional language.

16. The computer program product as set forth in claim 11
wherein the program instruction comprises Erlang functional
language.

17. The computer program product as set forth in claim 11
wherein the program instruction comprises Standard
Machine Language (“SML”) functional language.

18. The computer program product as set forth in claim 11
wherein the program instruction comprises Miranda func-
tional language.

19. The computer program product as set forth in claim 11
wherein the program instruction comprises Lisp functional
language.

20. The computer program product as set forth in claim 11
wherein the program instruction comprises Scheme func-
tional language.

21. A text code conversion system for displaying bi-direc-
tional text on a computer display comprising:

a computer processor for performing a logical process;

a computer-readable storage memory device suitable for

storage of program instructions;

program instruction embodied by the computer-readable

storage memory device which cause a computer proces-

sor, when executed, to:

detect a string of characters for display to a human
interface device contains one or more Arabic Letters
followed by one or more European Numbers;

assign bidirectional attributes to a logical character
stream;

assign initial level numbers while honoring any direc-
tional overrides by explicit processing, wherein the
directional overrides include Left-to-right display
order and Right-to-left display order;

change attribute types based upon surrounding attribute
types through weak processing and neutral process-
ing, wherein, during the weak processing, a direc-
tional override is changed to Right-to-left display
order for a last Arabic Letter of the one or more Arabic
Letters which immediate precedes a first character of
the one or more European Numbers while retaining an
attribute type of Arabic Letter for the last Arabic Let-

US 9,146,619 B2

17

ter, thereby causing the first European Number to
change to an attribute type of Arabic Number;

associate final level numbers to the logical character
stream through implicit processing; and

reorder the string of characters within the logical char-
acter stream into display order according to the final
level numbers by separately handling facets of layout
relating to character reordering and facets related to
character stream rendering; and

display the reordered string of characters to a human
interface device.

22. The text code conversion system as set forth in claim 21
wherein the assigning of bidirectional attributes comprises
obtaining bidirectional attributes from a character database.

23. The text code conversion system as set forth in claim 21
wherein the program instruction further comprises program
instructions for grouping characters into sequential runs
using type constructors and level such that characters are
processed collectively rather than individually.

24. The text code conversion system as set forth in claim 21
wherein the program instructions for changing attribute types
comprises blocks of functional programming language

10

15

20

18

indexed by name weak type processing, neutral type process-
ing, and implicit level processing such that the method may be
readily used as a reference.

25. The text code conversion system as set forth in claim 21
wherein the program instruction comprise Haskell functional
language.

26. The text code conversion system as set forth in claim 21
wherein the program instruction comprise Erlang functional
language.

27. The text code conversion system as set forth in claim 21
wherein the program instruction comprise Standard Machine
Language (“SML”) functional language.

28. The text code conversion system as set forth in claim 21
wherein the program instruction comprise Miranda func-
tional language.

29. The text code conversion system as set forth in claim 21
wherein the program instruction comprise Lisp functional
language.

30. The text code conversion system as set forth in claim 21
wherein the program instruction comprise Scheme functional
language.

